62 research outputs found

    Clouds, shadows, or twilight? Mayfly nymphs recognise the difference

    Get PDF
    1. We examined the relative changes in light intensity that initiate night-time locomotor activity changes in nymphs of the mayfly, Stenonema modestum (Heptageniidae). Tests were carried out in a laboratory stream to examine the hypothesis that nymphs increase their locomotion in response to the large and sustained reductions in relative light intensity that take place during twilight but not to short-term daytime light fluctuations or a minimum light intensity threshold. Ambient light intensity was reduced over a range of values representative of evening twilight. Light was reduced over the same range of intensities either continuously or in discrete intervals while at the same time nymph activity on unglazed tile substrata was video recorded. 2. Nymphs increased their locomotor activity during darkness in response to large, sustained relative light decreases, but not in response to short-term, interrupted periods of light decrease. Nymphs did not recognise darkness unless an adequate light stimulus, such as large and sustained relative decrease in light intensity, had taken place. 3. We show that nymphs perceive light change over time and respond only after a lengthy period of accumulation of light stimulus. The response is much lengthier than reported for other aquatic organisms and is highly adaptive to heterogeneous stream environments

    Translation to practice: a randomised controlled study of an evidenced based booklet targeted at breast care nurses in the United Kingdom

    Get PDF
    BACKGROUND: In the United Kingdom (UK), it was documented that a problem of knowledge transfer existed within the speciality of breast-cancer care, thus depriving patients of receiving optimal care. Despite increasingly robust research evidence indicating recommendation of whole body exercise for people affected by breast cancer, commensurate changes to practice were not noted amongst breast-care nurses (BCNs). AIM: To evaluate the effect of a targeted booklet, Exercise and Breast Cancer: A Booklet for Breast-Care Nurses, on changes in knowledge, reported practice, and attitudes of BCNs in the UK. METHOD: A prospective, experimental approach was used for designing a pre- and post-test randomised controlled study. Comparisons of knowledge, reported practice, and attitudes based on responses to a questionnaire were made at two time-points in two groups of BCNs (control and experimental). The unit of randomisation and analysis was hospital clusters of BCNs. The sample comprised 92 nurses from 62 hospitals. Analysis consisted of descriptive statistics and clustered regression techniques: clustered logistic regression for knowledge items, clustered linear regression for knowledge scores, ologit for attitude and reported practice items, and clustered multiple regression for paired and multiple variable analysis. RESULTS: A statistically significant increase in knowledge and changes in reported practice and attitudes were found. Robust variables affecting knowledge acquisition were: promotion of health, promotion of exercise, and understanding how exercise can reduce cancer-related fatigue. DISCUSSION: The study has shown that evidence-based printed material, such as an information booklet, can be used as an effective research dissemination method when developed for needs, values, and context of a target audience. CONCLUSIONS: This practical approach to research dissemination could be replicated and applied to other groups of nurses.</p

    Predicting Alzheimer disease with beta-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing

    Get PDF
    Objective: Biomarkers for Alzheimer disease (AD) can detect the disease pathology in asymptomatic subjects and individuals with mild cognitive impairment (MCI), but their cognitive prognosis remains uncertain. We aimed to determine the prognostic value of β-amyloid imaging, alone and in combination with memory performance, hippocampal atrophy, and apolipoprotein E ε4 status in nondemented, older individuals. Methods: A total of 183 healthy individuals (age = 72.0 ± 7.26 years) and 87 participants with MCI (age = 73.7 ± 8.27) in the Australian Imaging, Biomarkers, and Lifestyle study of ageing were studied. Clinical reclassification was performed after 3 years, blind to biomarker findings. β-Amyloid imaging was considered positive if the (11) C-Pittsburgh compound B cortical to reference ratio was ≥1.5. Results: Thirteen percent of healthy persons progressed (15 to MCI, 8 to dementia), and 59% of the MCI cohort progressed to probable AD. Multivariate analysis showed β-amyloid imaging as the single variable most strongly associated with progression. Of combinations, subtle memory impairment (Z score = -0.5 to -1.5) with a positive amyloid scan was most strongly associated with progression in healthy individuals (odds ratio [OR] = 16, 95% confidence interval [CI] = 3.7-68; positive predictive value [PPV] = 50%, 95% CI = 19-81; negative predictive value [NPV] = 94%, 95% CI = 88-98). Almost all amnestic MCI subjects (Z score ≤ -1.5) with a positive amyloid scan developed AD (OR = ∞; PPV = 86%, 95% CI = 72-95; NPV = 100%, 95% CI = 80-100). Hippocampal atrophy and ε4 status did not add further predictive value. Interpretations: Subtle memory impairment with a positive β-amyloid scan identifies healthy individuals at high risk for MCI or AD. Clearly amnestic patients with a positive amyloid scan have prodromal AD and a poor prognosis for dementia within 3 years.Christopher C. Rowe, Pierrick Bourgeat, Kathryn A. Ellis, Belinda Brown, Yen Ying Lim, Rachel Mulligan, Gareth Jones, Paul Maruff, Michael Woodward, Roger Price, Peter Robins, Henri Tochon-Danguy, Graeme O’Keefe, Kerryn E. Pike, Paul Yates, Cassandra Szoeke, Olivier Salvado, S. Lance Macaulay, Timothy O’Meara, Richard Head, Lynne Cobiac, Greg Savage, Ralph Martins, Colin L. Masters, David Ames, and Victor L. Villemagn

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

    Get PDF
    Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a Zγ pair in association with two jets. The analysis uses 140 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS detector during the years 2015–2018. Events with a Z boson candidate decaying into either an e+e− or μ+μ− pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp → Zγ jj cross-section for the electroweak production is measured to be 3.6 ± 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8+2.0 −1.8 fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions

    Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

    Get PDF
    A measurement of the charge asymmetry in top-quark pair (tt¯) production in association with a photon is presented. The measurement is performed in the single-lepton tt¯ decay channel using proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-massenergy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be AC = −0.003 ± 0.029 in agreement with the Standard Model expectation

    Observation of Wγγ triboson production in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter reports the observation of W(ℓν)γγ production in proton-proton collisions. This measurement uses the full Run 2 sample of events recorded at a center-of-mass energy of √s = 13 TeV by the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb−1. Events with a leptonically-decaying W boson and at least two photons are considered. The background-only hypothesis is rejected with an observed and expected significance of 5.6 standard deviations. The inclusive fiducial production cross section of W(eν)γγ and W(μν)γγ events is measured to be σfid=13.8±1.1(stat)+2.1−2.0(syst)±0.1(lumi) fb, in agreement with the Standard Model prediction

    Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector

    Get PDF
    This Letter reports on a search for off-shell production of the Higgs boson using 139 fb−1 of pp collision data at √s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider. The signature is a pair of Z bosons, with contributions from both the production and subsequent decay of a virtual Higgs boson and the interference of that process with other processes. The two observable final states are Z Z → 4 and Z Z → 22ν with = e or μ. In the Z Z → 4 final state, a dense Neural Network is used to enhance analysis sensitivity with respect to matrix element-based discrimination. The backgroundonly hypothesis is rejected with an observed (expected) significance of 3.3 (2.2) standard deviations, representing experimental evidence for off-shell Higgs boson production. Assuming that no new particles enter the production of the virtual Higgs boson, its total width can be deduced from the measurement of its off-shell production cross-section. The measured total width of the Higgs boson is 4.5+3.3 −2.5 MeV, and the observed (expected) upper limit on the total width is found to be 10.5 (10.9) MeV at 95% confidence level

    Measurement of the Higgs boson mass in the H → ZZ⁎ → 4ℓ decay channel using 139 fb−1 of √s = 13 TeV pp collisions recorded by the ATLAS detector at the LHC

    Get PDF
    The mass of the Higgs boson is measured in the H → Z Z∗ → 4 decay channel. The analysis uses proton– proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. The measured value of the Higgs boson mass is 124.99 ± 0.18(stat.) ± 0.04(syst.) GeV. In final states with muons, this measurement benefits from an improved momentum-scale calibration relative to that adopted in previous publications. The measurement also employs an analytic model that takes into account the invariant-mass resolution of the four-lepton system on a per-event basis and the output of a deep neural network discriminating signal from background events. This measurement is combined with the corresponding measurement using 7 and 8 TeV pp collision data, resulting in a Higgs boson mass of 124.94 ± 0.17(stat.) ± 0.03(syst.) GeV
    corecore